Dos de cada tres estudiantes de la UIB, matriculados en carreras con muchos estudiantes. ¿Notición?

Estos días estoy meditando sobre aplicaciones de la paradoja de la amistad en el análisis de redes de interacciones de proteínas. Como Clara Grima ya explicó coj…mente esta paradoja en esta entrada de Cienciaxplora, voy a ahorraros los detalles. En todo caso, y en resumen, se trata del hecho que, para la mayoría de nosotros, nuestros amigos tienen, de media, más amigos que nosotros (y son más felices y más guapos que nosotros, y han ligado a lo largo de su vida más que nosotros y …). Por suerte, esto (normalmente) no tiene nada que ver con nuestra personalidad, sino que es un teorema de teoría de grafos atribuido a Scott Feld, que lo enunció, demostró y analizó en su artículo del 1991 titulado Why your friends have more friends than You do.

En realidad, esta paradoja viene de más lejos, de la llamada “paradoja del tamaño de la clase” que introdujeron el mismo Scott Feld y Bernard Grofman en un artículo de 1977 titulado Variation in class size, the class size paradox, and some consequences for students:

si escogemos al azar un estudiante de un centro, el tamaño esperado del curso en el que está matriculado es casi siempre estrictamente mayor que el tamaño medio de los cursos de su centro, y en todo caso nunca menor.

Además, en muchas distribuciones razonables de números de matriculados por curso, una gran mayoría de los estudiantes están matriculados en cursos más numerosos que la media (lo que les lleva, por comparación, al desánimo y al abandono de los estudios, según los autores; igual se lo podemos explicar a las comisiones de acreditación de los grados: “no es culpa nuestra que abandonen los estudios, es que no saben teoría de grafos y creen que son unos desgraciados por estar en cursos numerosos”).

Aquí viene la demostración. Sean x_1,\ldots, x_n los números de alumnos de los n cursos que ofrece un determinado centro. Entonces:

  • El valor medio de alumnos por curso es \overline{x}=(\sum_{i=1}^n x_i)/n
  • Pero si consultamos todos los estudiantes uno a uno y les pedimos cuántos estudiantes hay en su curso, y calculamos la media de los valores obtenidos, será otro cantar: para cada curso de x_i alumnos, habrá  x_i alumnos que contestarán “x_i”, por lo que cada respuesta  x_i aparecerá x_i veces. La suma total de respuestas será, por lo tanto, \overbrace{x_1+\cdots+x_1}^{x_1} +\cdots+ \overbrace{x_n+\cdots+x_n}^{x_n}=\sum_{i=1}^n x_i^2. La respuesta media por alumno (es decir, el número medio de matriculados en el curso en el que está matriculado un alumno escogido al azar), llamémosle \overline{x}_{al}, se obtendrá dividiendo esta suma por el número de respuestas:  \overline{x}_{al}=(\sum_{i=1}^n x_i^2)/(\sum_{i=1}^n x_i)

Si ahora restamos \overline{x}_{al}-\overline{x}=(\sum_{i=1}^n x_i^2)/(\sum_{i=1}^n x_i)-(\sum_{i=1}^n x_i)/n, un pequeño cálculo algebraico muestra que es igual a la varianza \mathrm{var}(x) de x_1,\ldots, x_n partido por su media \overline{x}. Y ahora es el momento de recordar que la varianza siempre es positiva, y es 0 sólo cuando x_1=\cdots=x_n. Por lo tanto, salvo en este caso, el número medio de matriculados en el curso de un estudiante escogido al azar será siempre mayor que el número medio de matriculados por curso. Y cuánto mayor sea la varianza, es decir, cuánto más variados sean los números x_1,\ldots, x_n, mayor será el cociente entre estas dos medias.

Vale, un experimento. He sacado de aquí los números de matriculados en los 30 grados de la UIB en el curso 2013-14 (los matriculados en dobles titulaciones los he contado en cada una de los grados involucrados). Estos números van de los 1228 matriculados en Administración de Empresas a los 93 matriculados en Matemáticas. He calculado el número medio de estudiantes por grado, \overline{x}, y el número medio de estudiantes matriculados en el grado de un estudiante aleatorio, \overline{x}_{al}. Los resultados (redondeados) han sido \overline{x}=366\overline{x}_{al}=593: un estudiante está matriculado de media en un grado de 593 estudiantes, pero el número medio de estudiantes por grado es de 366. Además, un 66.5% de los estudiantes de la UIB están matriculados en grados con un número de estudiantes mayor que la media. Es raro que algunos periódicos tradicionalmente críticos por defecto con la UIB no lo hayan publicado nunca.

El código R, por si queréis confirmar los números, es muy sencillo.

 ests.UIB=c(1228,1042,1028,623,612,560,497,467,432,412,400,351,339,
252,243,231,228,226,215,180,174,154,169,156,146,140,134,131,116,93)
#Media de alumnos por grado
mean(ests.UIB)
#Media de alumnos por grado desde el punto de vista del alumno
sum(ests.UIB^2)/sum(ests.UIB)
#Porcentaje de alumnos en grados más numerosos que la media
sum(ests.UIB[ests.UIB>mean(ests.UIB)])/sum(ests.UIB)

En cambio no sé cómo usar la paradoja de la amistad para explicar la percepción de los estudiantes de que sus amigos siempre tienen menos tareas que ellos para hacer en casa.

 

Advertisements